Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412730

RESUMO

Inadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change, carbon neutrality, food security, and resource recovery. The scientific community recognizes landfill management's impact on climate change, evidenced by in over 191 published articles (1998-2023). This article presents emerging solutions for sustainable landfill management, including physico-chemical, oxidation, and biological treatments. Each technology is evaluated for practical applications. The article emphasizes landfill management's global significance in pursuing carbon neutrality, prioritizing resource recovery over end-of-pipe treatments. It is important to note that minimizing water, chemical, and energy inputs in nutrient recovery is crucial for achieving carbon neutrality by 2050. Water reuse, energy recovery, and material selection during manufacturing are vital. The potential of water technologies for recovering macro-nutrients from landfill leachate is explored, considering feasibility factors. Integrated waste management approaches, such as recycling and composting, reduce waste and minimize environmental impact. It is conclusively evident that the water technologies not only facilitate the purification of leachate but also enable the recovery of valuable substances such as ammonium, heavy metals, nutrients, and salts. This recovery process holds economic benefits, while the conversion of CH4 and hydrogen into bioenergy and power generation through microbial fuel cells further enhances its potential. Future research should focus on sustainable and cost-effective treatment technologies for landfill leachate. Improving landfill management can mitigate the adverse environmental and health effects of inadequate waste disposal.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/química , Carbono , Instalações de Eliminação de Resíduos , Água , Resíduos Sólidos
2.
Sci Rep ; 13(1): 19621, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949908

RESUMO

Methylene blue (MB) dye is considered a well-known dye in many industries and the low concentration of MB is considered very polluted for all environment if it discharged without any treatment. For that reason, many researchers used advanced technologies for removing MB such as the electrochemical methods that considered very simple and give rapid response. Considering these aspects, a novel quartz crystal microbalance nanosensors based on different concentrations of PVC@SiO2 were designed for real-time adsorption of MB dye in the aqueous streams at different pHs and different temperatures. The characterization results of PVC@SiO2 showed that the PVC@SiO2 have synthesized in spherical shape. The performance of the designed QCM-Based PVC@SiO2 nanosensors were examined by the QCM technique. The sensitivity of designed nanosensors was evaluated at constant concentration of MB (10 mg/L) at different pHs (2, 7 and 11) and temperatures (20 °C, 25 °C, and 30 °C). From the experimental, the best concentration of PVC@SiO2 was 3% for adsorbed 9.99 mg of cationic methylene blue at pH 11 and temperature 20 °C in only 5.6 min.

3.
Sci Rep ; 13(1): 19597, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949960

RESUMO

Chromium is a hazardous compound from industrial processes, known for its toxicity, mutagenicity, teratogenicity, and carcinogenicity. Chemical methods are efficient but cost-effective alternatives with reduced sludge are sought. Electro-coagulation, utilizing low-cost iron plate electrodes, was explored for factual tannery wastewater treatment in this manuscript. Operating parameters such as initial chromium concentration, voltage, electrode number, operating time, agitation speed and current density has been studied to evaluate the treatment effeciency. Under optimal conditions (15 V, 0.4 mA/cm2, 200 rpm, 330 ppm chromium, 8 iron electrodes with a total surface area of 0.1188 m2, 3 h), chromium elimination was 98.76%. Iron anode consumption, power use, and operating cost were 0.99 gm/L, 0.0143 kW-h/L, and 160 EGP/kg of chromium eliminated, respectively. Kinetics studies were pursued first-order reaction (97.99% correlation), and Langmuir isotherms exhibited strong conformity (Langmuir R2: 99.99%). A predictive correlation for chromium elimination (R2: 97.97%) was developed via statistical regression. At HARBY TANNERY factory in Egypt, industrial sewage treatment achieved a final chromium disposal rate of 98.8% under optimized conditions.

4.
Sci Rep ; 13(1): 15601, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730796

RESUMO

Although submerged membrane bioreactor (MBR) are widely used in treating municipal wastewater and recovery of potential resources, membrane operational parameters and membrane fouling control remain debated issues. In this study, the treatment of municipal wastewater by MBR at high-biomass sludge (MLSS (g/L) ranging from 5.4 g/L to 16.1 g/L) was assessed at an organic loading rates (OLRs) ranging from 0.86 to 3.7 kg COD/m3d. The correlation between trans-membrane pressure and total fouling resistance was thoroughly investigated in this study. According to the findings, greater OLRs of 0.86 to 3.7 kg COD/m3d caused a decrease in COD, BOD, and NH4-N removal efficiency, and higher OLRs of 3.7 kg COD/m3d resulted in a higher increase in total fouling resistance (Rt). The economic study of using the MBR system proved that for a designed flow rate of 20 m3/d, the payback period from using the treated wastewater will be 7.98 years, which confirms the economic benefits of using this MBR for treating municipal wastewater. In general, understanding the challenges facing the efficiency of MBR would improve its performance and, consequently, the sustainability of wastewater reclamation.


Assuntos
Reatores Biológicos , Águas Residuárias , Membranas , Biomassa , Cabeça
5.
Bioresour Technol ; 381: 129168, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182680

RESUMO

Anammox is a widely adopted process for energy-efficient removal of nitrogen from wastewater, but challenges with NOB suppression and NO3- accumulation have led to a deeper investigation of this process. To address these issues, the synergy of partial denitrification and anammox (PD-anammox) has emerged as a promising solution for sustainable nitrogen removal in wastewater. This paper presents a comprehensive review of recent developments in the PD-anammox system, including stable performance outcomes, operational parameters, and mathematical models. The review categorizes start-up and recovery strategies for PD-anammox and examines its contributions to sustainable development goals, such as reducing N2O emissions and saving energy. Furthermore, it suggests future trends and perspectives for improving the efficiency and integration of PD-anammox into full-scale wastewater treatment system. Overall, this review provides valuable insights into optimizing PD-anammox in wastewater treatment, highlighting the potential of simultaneous processes and the importance of improving efficiency and integration into full-scale systems.


Assuntos
Desnitrificação , Águas Residuárias , Esgotos , Nitrogênio , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Oxirredução
6.
Sci Rep ; 13(1): 4431, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932149

RESUMO

An important industrial process that often occurs on the surface of a heterogeneous catalyst using thermochemical or photochemical could help in the oxidation of methanol-based wastewater to formaldehyde. Titania-based photocatalysts have drawn a lot of interest from scientists because they are a reliable and affordable catalyst material for photocatalytic oxidation processes in the presence of light energy. In this study, a straight-forward hydrothermal method for producing n-TiO2@α-Fe2O3 composite photocatalysts and hematite (α-Fe2O3) nanocubes has been done. By adjusting the ratio of n-TiO2 in the prepared composite photocatalysts, the enhancing influence of the nitrogen-doped titania on the photocatalytic characteristics of the prepared materials was investigated. The prepared materials were thoroughly characterized using common physiochemical methods, such as transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), X-ray photoelectrons spectroscopy (XPS), physisorption (BET), and others, in order to learn more about the structure The results obtained showed that nitrogen-doped titania outperforms non-doped titania for methanol photooxidation. The addition of nitrogen-doped titania to their surfaces resulted in an even greater improvement in the photooxidation rates of the methanol coupled with hematite. The photooxidation of methanol in the aqueous solution to simulate its concentration in the wastewater has been occurred. After 3 h, the four weight percent of n-TiO2@α-Fe2O3 photocatalyst showed the highest rate of HCHO production.

7.
Sci Rep ; 12(1): 19666, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385150

RESUMO

In this study, a simple method based on non-ionic surfactant polysorbates-80 was used to create mesoporous γ-Al2O3NPs. The properties of the prepared mesoporous alumina nanoparticles (Al2O3NPs) were verified using ATR-FTIR, XRD, SEM, TEM, DLS, and BET surface area analysis. Then, thin-film nanocomposite (TFN) nanofiltration membranes were fabricated by interfacial polymerization of embedded polyamide layers with varied contents (0.01 to 0.15 wt.%) of mesoporous γ-Al2O3NPs. The surface roughness, porosity, pore size, and contact angle parameters of all the prepared membranes were also determined. The performance of the fabricated membranes was investigated under various mesoporous γ-Al2O3NPs loads, time, and pressure conditions. Mesoporous γ-Al2O3NPs revealed an important role in raising both the membrane hydrophilicity and the surface negativity. The addition of 0.03 wt.% mesoporous γ-Al2O3NPs to the TFN membrane increased water flux threefold compared to the TF control (TFC) membrane, with maximum water flux reaching 96.5, 98, 60, and 52 L/(m2.h) for MgSO4, MgCl2, Na2SO4, and NaCl influent solutions, respectively, with the highest salt rejection of 96.5%, 92.2%, 98.4%. The TFN-Al2O3 membrane was also able to soften water and remove polyvalent cations such as Mg2+ with a highly permeable flux. The TFN-Al2O3 membrane successfully removed the hardness of the applied water samples below the WHO limit compared to using merely the TFC membrane. Furthermore, the TFN-Al2O3 nanofiltration membrane unit proved to be a promising candidate for the desalination of real brine like that collected from the Safaga area, Egypt.

8.
Environ Res ; 215(Pt 3): 114432, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167115

RESUMO

The various forms of nitrogen (N), including ammonium (NH4+), nitrite (NO2-), and nitrate (NO3-), present in wastewaters can create critical biotic stress and can lead to hazardous phenomena that cause imbalances in biological diversity. Thus, biological nitrogen removal (BNR) from wastewaters is considered to be imperatively urgent. Therefore, anammox-based systems, i.e. partial nitrification and anaerobic ammonium oxidation (PN/anammox) and partial denitrification and anammox (PD/anammox) have been universally acknowledged to consider as alternatives, promising and cost-effective technologies for sustainable N removal from wastewaters compared to nitrification-denitrification processes. This review comprehensively presents and discusses the latest advances in BNR technologies, including traditional nitrification-denitrification and anammox-based systems. To a deep understanding of a better-controlled combining anammox with traditional processes, the microbial community diversity and metabolism, as well as, biomass morphological characteristics were clearly reviewed in the anammox-based systems. Explaining simultaneous microbial competition and control of crucial operation parameters in single-stage anammox-based processes in terms of optimization and economic benefits makes this contribution a different vision from available review papers. The most important sustainability indicators, including global warming potential (GWP), carbon footprint (CF) and energy behaviours were explored to evaluate the sustainability of BNR processes in wastewater treatment. Additionally, the challenges and solutions for BNR processes are extensively discussed. In summary, this review helps facilitate a critical understanding of N removal technologies. It is confirmed that sustainability and saving energy would be achieved by anammox-based systems, thereby could be encouraged future outcomes for a sustainable N removal economy.


Assuntos
Compostos de Amônio , Purificação da Água , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Desnitrificação , Nitratos , Nitritos , Nitrogênio/metabolismo , Dióxido de Nitrogênio , Oxirredução , Esgotos , Águas Residuárias
9.
Chemosphere ; 306: 135580, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35810864

RESUMO

The presence of 1,4 dioxane in wastewater is associated with severe health and environmental issues. The removal of this toxic contaminant from the industrial effluents prior to final disposal is necessary. The study comprehensively evaluates the performance of sequential batch membrane bioreactor (MBR) for treating wastewater laden with 1,4 dioxane. Acetate was supplemented to the wastewater feed as an electron donor for enhancing and stimulating the microbial growing activities towards the degradation of 1,4 dioxane. The removal efficiency of 1,4 dioxane was maximized to 87.5 ± 6.8% using an acetate to dioxane (A/D) ratio of 4.0, which was substantially dropped to 31.06 ± 3.7% without acetate addition. Ethylene glycol, glyoxylic acid, glycolic acid, and oxalic acid were the main metabolites of 1,4 dioxane biodegradation using mixed culture bacteria. The 1,4 dioxane degrading bacteria, particularly the genus of Acinetobacter, were promoted to 92% at the A/D ratio of 4.0. This condition encouraged as well the increase of the main 1,4 dioxane degraders, i.e., Xanthomonadales (12.5%) and Pseudomonadales (9.1%). However, 50% of the Sphingobacteriales and 82.5% of Planctomycetes were reduced due to the inhibition effect of the 1,4 dioxane contaminate. Similarly, the relative abundance of Firmicutes, Verrucomicrobia, Chlamydiae, Actinobacteria, Chloroflexi, and Nitrospirae was reduced in the MBR at the A/D ratio of 4.0. The results derived from the microbial analysis and metabolites detection at different A/D ratios indicated that acetate supplementation (as an electron donor) maintained an essential role in encouraging the microorganisms to produce the monooxygenase enzymes responsible for the biodegradation process. Economic feasibility of such a MBR system showed that for a designed flow rate of 30 m3∙d-1, the payback period from reusing the treated wastewater would reach 6.6 yr. The results strongly recommend the utilization of mixed culture bacteria growing on acetate for removing 1,4 dioxane from the wastewater industry, achieving dual environmental and economic benefits.


Assuntos
Elétrons , Águas Residuárias , Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Dioxanos/metabolismo
10.
J Environ Manage ; 316: 115239, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35568016

RESUMO

Overcoming the existing environmental issues and the gradual depletion of energy sources is a priority at global level, biohydrogen can provide a sustainable and reliable energy reserve. However, the process instability and low biohydrogen yields are still hindering the adoption of biohydrogen production plants at industrial scale. In this context, membrane-based biohydrogen production technologies, and in particular fermentative membrane bioreactors (MBRs) and microbial electrolysis cells (MECs), as well as downstream membrane-based technologies such as electrodialysis (ED), are suitable options to achieve high-rate biohydrogen production. We have shed the light on the research efforts towards the development of membrane-based technologies for biohydrogen production from organic waste, with special emphasis to the reactor design and materials. Besides, techno-economic analyses have been traced to ensure the suitability of such technologies in bio-H2 production. Operation parameters such as pH, temperature and organic loading rate affect the performance of MBRs. MEC and ED technologies also are highly affected by the chemistry of the membrane used and anode material as well as the operation parameters. The limitations and future directions for application of membrane-based biohydrogen production technologies have been individuated. At the end, this review helps in the critical understanding of deploying membrane-based technologies for biohydrogen production, thereby encouraging future outcomes for a sustainable biohydrogen economy.


Assuntos
Eletrólise , Hidrogênio , Reatores Biológicos , Eletrodos , Fermentação , Hidrogênio/análise
11.
Bioresour Technol ; 341: 125838, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34467888

RESUMO

With escalating global demand for renewable energy, exploitation of farm wastes (i.e., agriculture straw wastes (ASWs), livestock wastewater (LW) and sewage sludge (SS)) has been considered to attain maximum methane yield (MY) via anaerobic digestion (AD). Results pointed that mixture of SS and LW as anaerobes' source with 20 g of ASWs/300 mL of working volume achieved maximum MY and volatile solid (VS) removal efficiency of 0.44 (±0.05) L/gVS and 51.4 (±4.1)%, respectively. This was mainly because of emerging heavy duty bacterial species (i.e., Syntrophorhabdaceae and Synergistaceae) and archaeal community (i.e, Methanosarcina and Methanoculleus) after 70 days of anaerobic incubation. This was acquired along with boosting enzymatic activity, especially xylanase, cellulase and protease up to 71.5(±7.9), 179.3(±14.3) and 207.2(±16.2) U/100 mL, respectively. Furthermore, the digestate contained high concentrations of NH4+ (960.1±(76.8) mg/L), phosphorus (126.3±(10.1) mg/L) and trace metals, making it a good candidate as organic fertilizer.


Assuntos
Metano , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Fazendas , Esgotos
12.
Waste Manag ; 129: 20-25, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34020372

RESUMO

A novel approach of using two stage anaerobic digestion coupled with electrodialysis technology has been investigated. This approach was used to improving bio hydrogen and methane yields from food waste while simultaneously producing a green chemical feedstock. The first digester was used for hydrogen production and the second digester was used for methane production. The first digester was combined with continuous separation of volatile fatty acids using electrodialysis. The concentrations of carbohydrates, proteins and fats in the prepared food waste were 22.7%, 5.7% and 5.2% respectively. Continuous removal of volatile fatty acids during fermentation in the hydrogen digester not only increased hydrogen yields but also increased the production rate of volatile fatty acids. As a result of continuous VFA separation, hydrogen yields increased from 17.3 mL H2/g VS fermenter to 33.68 mL H2/g VS fermenter. Methane yields also increased from 28.94 mL CH4/g VS fermenter to 43.94 mL CH4/g VS fermenter. This represents a total increase in bio-energy yields of 77.1%. COD reduced by 73% after using two stage anaerobic digestion, however, this reduction increased to 86.7% after using electrodialysis technology for separation of volatile fatty acids. Electrodialysis technology coupled with anaerobic digestion improved substrate utilization, increased bioenergy yields and looks to be promising for treating complex wastes such as food waste.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Ácidos Graxos Voláteis , Hidrogênio , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...